DATA⁺AI SUMMIT BY Se databricks

Winning the U.S. Cyber Command AI Alert Data Chall enge with Graphs

1	GRAPHISTRY	
	Makers of Louie.AI	

Dr Alex Morrise June 13, 2024

100X Investigations

- ✓ Connect, Use, Embed: Splunk, Databricks, Neo4j, Python, ...
- ✓ First GPU visual graph AI platform
- ✓ Louie.AI: GenAI-first investigation & automation
- **Users** Operators/analysts, data scientists, & developers: Cybersecurity, fraud, supply chain, IT, fintech, & more

Distros SaaS, private cloud, air-gapped

COOL VENDOR

The U.S.CYBERCOMM AI Challenge: Imagine being a detective with the power to see crimes. That's what we do with cyber logs.

USCYBERCOM AI Challenge: Landscape of Threats from Fusion Center data

Many bad actors, many locations, and diverse threat models

Makers of Louie.AI

GRAPHISTRY

info@graphistry.com

GG

Data are Correlations; use Graph AI to see, understand and

time	src_domain	src_computer	dst_computer
150885	U620@DOM1	C17693	C1003
151036	U748@DOM1	C17693	C305
151648	U748@DOM1	C17693	C728
151993	U6115@DOM1	C17693	C1173
153792	U636@DOM1	C17693	C294
48263	C11843\$@DOM1	C11843	C528
77937	C8470\$@DOM1	C8470	C528
173300	C716\$@DOM1	C716	C716
102472		C16126	C586

Seeing the Attack Surface Demo:

1. Natural language querying of Splunk & multi-step actions

2. Automatic UMAP embedding + visualization of rich table

More information: See Graphistry talk at NDC Security 2024 G GRAPHISTRY

Makers of Louie.AI

Use Graphistry directly in Databricks

Graphistry[Al]

- Augment SIEM with security data lake + AI
- Combine with
 Splunk/Snowflake
- Unify views and reduce noise via queries
- Graphistry[ai] directly in databricks

- GPU Graph intelligence: Viz, querying, & Al <--databricks is mostly tabular
- Turning Logs into Signals: AVR
- Analysts: Hunting UI across DBs <-- analyst can combine data in splunk + sql in same workflow
- Managed investigations: Continuously learning security workflows
- End to End GPU pipeline using CuCat (Spark Databricks too)

Louie.AI progress on speed running the challenge

- 1. PyGraphistry[AI]: Automates & GPU accelerates
- 2. Louie interfaces: Integrates notebooks, dashboards, automation
- 3. Louie genAI: Conversational interfaces, continual learning, + LLM text analysis

Fig: GPU cu_cat for feature engineering

Makers of Louie.AI

GRAPHISTRY

Close to achieving the full speed run

Road Map

Graphistry 2022 pyGraphistry[AI] Louie 2023 Data schema learning Tools, connectors, process models Python sandbox pyGraphistry[AI] agent: graph, umap, ... cu_cat feature engineering GFQL graph dataframe query language Louie 2024 Q1 Dashboarding **GPU** runtime Pattern learning Louie 2024 O2 Automation

Ultimately this is a talk about the EDA process — mission critical in an hour

9

Modern EDA

What we want

G

info@graphistry.com

info@graphistry.com

oco train

eTL

g.umap().dbscan()

Modern EDA with Graphistry

viz

g.transform(df_batch)

g.plot()

... lots more, ask us about auto GNNs, GFQL, self writing wikis and KGs

GRAPHISTRY

Acceleration for Scale (CuCat) (eg, terabytes come talk to us)

G

How does this work? Feature Extraction and AutoML

me	src domain	src computer	dst computer	# 500	how the	model h	as orda	nized fø	patures						
0885	U620@DOM1	C17693	C1003	X = Q X	j5node_	features	us orga		acares.						
)36	U748@DOM1	C17693	C305		feats:	feats:	feats:	feats:	feats: c2446	feats: c13713	feats:	feats:	feats:	feats:	,
1648	U748@DOM1	C17693	C728		c9994, c9997	kerberos, u1, u7	c5252, c5281	c6121, c6125	c2444, c24464	c13130, c13134	c5866, c5864	c4674, c4667	c1111, c11114	c6257, c6255	
				C	0.052992	0.050029	0.051413	0.051403	0.050019	0.061212	0.051419	0.050463	0.057304	0.051460	 0.0
1993	U6115@DOM1	C17693	C1173	1	1.609871	0.050030	0.051420	0.051410	0.050016	0.091486	0.051426	0.050465	0.061034	0.051467	 0.0
52702	LIG2GODOM1	C17602	C204	2	0.051975	0.050030	0.557747	0.054309	0.050016	0.070115	0.051457	0.050475	0.060911	0.051500	 0.0
5192	0030@DOMI	017093	0294	3	0.052089	0.050032	0.051534	0.051523	0.050023	0.069080	0.051541	0.050501	3.781985	0.051586	 0.0
				4	1.612539	0.050031	0.051482	0.051472	0.050016	0.070362	0.051488	0.050485	0.061027	0.051532	 0.5
48263	C11843\$@DOM1	C11843	C528	19008	0.051856	22.477729	7.183005	0.051355	0.050015	0.061363	0.065023	0.050447	2.851467	0.051411	 0.0
				19009	0.051961	0.077069	5.711064	0.051431	0.050016	0.051497	0.069693	0.050472	0.050832	0.051490	 0.0
77937	C8470\$@DOM1	C8470	C528												
						• •			• .		л.				
73300	C716\$@DOM1	C716	C716	Using pygraphistry[AI] to											
						extra	act f	eatu	ires	(fro	m lo	gs,			
02/72	LI7365@DOM1	C16126	C586			any+k	ina	data	from	$(\alpha - y)$					

anything dataframe-y)

GG

Predict behavioral correlation id given the intrusion pattern -> incident id

dst_computer	src_computer	src_domain	time
C1003	C17693	U620@DOM1	150885
C305	C17693	U748@DOM1	151036
C728	C17693	U748@DOM1	151648
C1173	C17693	U6115@DOM1	151993
C294	C17693	U636@DOM1	153792
C528	C11843	C11843\$@DOM1	48263
C528	C8470	C8470\$@DOM1	77937
C716	C716	C716\$@DOM1	173300
C586	C16126	U7365@DOM1	102/72

Seeing the Attack Surface - Predictive Modeling

Can it get Easier?

Louie Optimizes Path Traversal

The Modern SOC Analyst Struggle

- Investigations take a Tree structure
- Louie learns optimal path for reusable playbooks/plans
- Agentic-OS you connect with your own flows
- Learning Loops so that python/sql/tickets aren't one offs, but feed back into system

Louie helps you turn Process into Plans

SOC's are full of Context and Expertise

- Investigations are steps
- Highlights Process vs Planning
- Optimizes and personalized user experience
- Build reusable pipelines, automatically

Process vs Plan

Louie.AI: GenAI learning operating system for teams, data, & code

Databases & APIs: SQL, Log, Graph, ... Indexes data: Wikis, ... Data science & coding libraries How your team works

Louie learns & talks to:

Plug in your own LLM, Agent, Data, API, ...

Thank you!

Takeaways

- GenAl reset happening, with authoring stack first
- Look for learning loops + data pipelines
- Supercharges mission critical investigations in real time (CYBERCOM, supply chains, knowledge graphs, etc)
- Scaling & autonomy happening, longer timeline

! pip install pygraphistry

- GPU graph viz
- UMAP
- cu_cat
- GFQL

Contact @ louie.ai for Early Access Program

Dr Alex Morrise @silkspaceships

